Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago

Carina Schlebusch with her team just published analyses of the ancient remains from South Africans in Science today. You can find more information about this fascinating study in our post: Ancient DNA pushes human emergence back.

Anatomically modern humans evolved in Africa, but pinpointing when has been difficult. Schlebusch et al. sequenced three ancient African genomes from the Stone Age, about 2000 years old, and four from the Iron Age, 300 to 500 years old. One of the oldest samples, sequenced to 13× coverage, appears most closely to resemble individuals from the present-day San population. However, this individual seems to have lacked genetic contributions from other modern African populations, including pastoralists and farmers, which were observed in modern San individuals. Thus, the earliest divergence between human populations may have occurred 350,000 to 260,000 years ago.

Abstract

Southern Africa is consistently placed as a potential region for the evolution of Homo sapiens. We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians. Using traditional and new approaches, we estimate the first modern human population divergence time to between 350,000 and 260,000 years ago. This estimate increases the deepest divergence among modern humans, coinciding with anatomical developments of archaic humans into modern humans, as represented in the local fossil record.